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ABSTRACT

Eukaryotic topoisomerase Il (topo ll) is the essential
decatenase of newly replicated chromosomes and
the main relaxase of nucleosomal DNA. Apart from
these general tasks, topo Il participates in more
specialized functions. In mammals, topo lla interacts
with specific RNA polymerases and chromatin-re-
modeling complexes, whereas topo lIf regulates de-
velopmental genes in conjunction with chromatin
remodeling and heterochromatin transitions. Here
we show that in budding yeast, topo Il regulates the
expression of specific gene subsets. To uncover this,
we carried out a genomic transcription run-on shortly
after the thermal inactivation of topo Il. We identified
a modest number of genes not involved in the
general stress response but strictly dependent on
topo Il. These genes present distinctive functional
and structural traits in comparison with the genome
average. Yeast topo Il is a positive regulator of
genes with well-defined promoter architecture that
associates to chromatin remodeling complexes;
it is a negative regulator of genes extremely
hypo-acetylated with complex promoters and un-
defined nucleosome positioning, many of which are
involved in polyamine transport. These findings
indicate that yeast topo Il operates on singular chro-
matin architectures to activate or repress DNA tran-
scription and that this activity produces functional
responses to ensure chromatin stability.

INTRODUCTION

In eukaryotic cells, topoisomerases I and II (topo I and
topo II) solve the topological constrains of DNA (1,2)
and are prominent targets of anti-cancer drugs (3). Topo

I relieves DNA torsional stress by cleaving one strand of
the duplex, allowing the DNA to rotate around the
uncleaved strand (4). Topo II removes DNA supercoils,
knots and catenanes by transporting one segment of
duplex DNA through a transient double-strand break in
another (5,6). Topo II is essential to decatenate newly
replicated DNA and facilitate chromosome segregation
(2,7). Either topo I or topo II is required to relax the
DNA supercoils generated during the progression of
DNA and RNA polymerases (8,9). Accordingly, topo I is
not essential in yeast cells, as the cross-inversion mechanism
of topo II is more efficient than the strand-rotation mech-
anism of topo I in relaxing chromatinized DNA (10,11).
In addition to the aforementioned general roles, cellular
topoisomerases have been postulated as regulators of gene
expression. Proper chromatin assembly requires topo-
isomerase activity (12,13), and DNA topology largely in-
fluences the conformation, dissociation and reassociation
of nucleosomes (14-16). Negative supercoiling enhances
the formation of the transcription complex at gene pro-
moters (17,18), whereas positive supercoiling precludes
complex formation and transcription initiation (19,20).
Thus, not surprisingly, topoisomerases have been found
implicated in a large variety of transcriptional effects. In
yeast cells, topo I and topo II bind preferentially to
intergenic regions of highly active genes (21,22). In
Schizosaccharomyces pombe, topo I facilitates nucleosome
disassembly in gene promoters before transcription (23);
in Saccharomyces cerevisiae, topo I and topo II act redun-
dantly to facilitate recruitment of RNA polymerase II to
nucleosome-free promoters (22). In S. cerevisiae, topo 1
affects the transcription of stress-inducible genes located
in subtelomeric regions (24). A more recent study in
S. cerevisiae concludes that topo I and topo II mutually
modulate DNA supercoiling to maintain promoters in a
state competent for transcriptional activation (25). In the
case of higher eukaryotes, topo I (26) and topo II (27,28)
have also been found to be associated to RNA polymerase
complexes during transcription activation and elongation.
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From the aforementioned studies, however, it is difficult
to ascertain whether the transcriptional regulation of some
gene subsets relies on topoisomerase-specific mechanisms.
In most cases, topo I and topo II compensate each other,
and it cannot be excluded that the observed transcriptional
effects are secondary to the deregulation of upstream or
neighboring processes. Moreover, as interfering with the
topoisomerase activities can produce DNA strand breaks,
transcription alterations could also be secondary to DNA
damage (29). In this regard, the only clear evidence that a
specific topoisomerase regulates gene expression is found in
mammals, which have two topo II isoenzymes (topo Ila
and topo IIpB). Topo o, which is essential for chromosome
replication and segregation, facilitates RNA polymerase 11
transcription on chromatin templates (27), promotes acti-
vation of RNA polymerase I by facilitating pre-initiation
complex formation (28) and interacts with chromatin re-
modeling complexes (30). Topo II is instead dispensable
for cell proliferation but essential for normal development
(31-33). Topo 11 physically interacts with developmentally
controlled genes and up- or downregulates their transcrip-
tion (34,35). Topo IIP induces the activation of gene
promoters regulated by nuclear hormone receptors (36),
inhibits the transcription of genes regulated by the
retinoic acid receptor alpha (37) and modulates the expres-
sion of genes involved in neuronal survival (38). Thus far,
the molecular mechanisms by which topo IIf regulates
transcription are poorly understood. Likewise, it remains
to be explored whether this exclusive role of topo IIp is
conserved in lower eukaryotes that have a unique topo II
enzyme (i.c. yeast).

Here, we show that in S. cerevisiae, topo II regulates the
transcriptional activation of specific gene subsets. To reveal
this, we carried out a genomic transcription run-on (GRO)
in TOP2 and top2-ts strains to observe the genome-wide
alterations of transcription rates after thermal inactivation
of topo II. Because GRO reflects mainly RNA polymerase
densities, plausible effects of topo II on transcript matur-
ation and degradation were excluded (39,40). Moreover, as
we conducted GRO immediately after topo II inactivation
in yeast cells with native topo I activity, transcription alter-
ations were not attributable to accumulation of DNA
supercoiling, which requires prolonged inactivation of
topoisomerase activity (11). Finally, as thermal inactivation
of topo II could produce some general stress, we excluded
from our analyses the genes commonly affected by envir-
onmental stress conditions (41). Following this approach,
we identified a modest number of yeast genes strictly up-
and downregulated after topo II inactivation. Remarkably,
these genes present distinctive functional and structural
trends in comparison with the genome average. These
features suggest that, like topo Il in mammals, topo 11
interacts in yeast with specific chromatin ensembles to
regulate gene transcription.

MATERIALS AND METHODS
Yeast strains

Saccharomyces cerevisiae strains JCW25 (TOP2), JCW26
(top2-4), JCW27 (Atopl TOP2) and JCW28 (Atopl

top2-4) are derivatives of FY251 (S288C genetic back-
ground) and have previously been described (42).

Genome-wide transcription run-on

Yeast strains were grown at 30°C to logarithmic phase in
YPD medium containing 2% glucose. Thermal inactiva-
tion of topoisomerase 11 was carried out by the addition of
calculated volume of hot media to quickly equilibrate the
cultures at 37°C. After 10-min incubation at 37°C, GRO
was done as described (39). Briefly, ~5 x 10% cells were
washed in cold water and permeabilized with 0.5%
N-lauryl sarcosine sodium sulfate. Cells were incubated
for Smin at 30° C in 250 pl of transcription buffer con-
taining 4 mM each of CTP, ATP, GTP and 12l of 33p.
UTP (3000 Ci/mmol, 10mCi/ml). In vivo labeled RNA
was purified and hybridized (0.2—2 x 10’ dpm/5ml) on
nylon filters printed using PCR-amplified whole ORF
(open reading frame) sequences of S. cerevisiae (43).
Array filters were exposed to an imaging plate (BAS-
MP, FujiFilm) and were read in a phosphor-imager
scanner (FLA-3000, FujiFilm). Images were quantified
by using ArrayVision 7.0 software, taking the sSARM
density (with the corresponding subtracted background)
as signal. Filters were also rehybridized with total yeast
genomic DNA labeled by random priming and the signals
were used to normalize GRO signals in each respective
filter. All GRO experiments were performed in triplicate
and their reproducibility was tested by the ArrayStat
software (Imaging Research, Inc.), considering the data
as independent and allowing the program to take a
minimum number of two valid replicates to calculate the
mean values for every gene. Median absolute deviation
calculated individually for each sample set was used to
filter out outlier values. Usually no >2% of the gene
signals analyzed were discarded because of their inconsist-
ency among the three replicates. Pair-wise comparisons
between the independent sets of intensities yield high
Pearson coefficients (r > 0.95), thus confirming the robust-
ness of the GRO results. GRO data sets were stored in the
GEO databases (http://www.ncbi.nlm.nih.gov/geo) with
accession number GSE16673.

Analysis of gene classes

In all, 1092 essential genes from S. cerevisiae were
obtained from a genome-scale functional profiling (44).
In addition, 1073 TATA genes were obtained from a
concise data set, which was formed by taking into
account the location and conservation of a TATA consen-
sus in the gene upstream region and the gene sensitivity to
TATA binding protein (45). Relative enrichments for
each gene class were taken as the ratio of observed over
expected genes of class X falling in the set of interest
(down- or upregulated genes). Fisher’s exact test was
used to assess significance of enrichment. Expression vari-
ability was calculated on the basis of the dynamic range
exhibited in the normalized expression rates we obtained
from 352 different data sets referring to roughly 2400 ex-
perimental conditions, as compiled by the SPELL
database (46). For each up- and downregulated gene, we
extracted the normalized expression rates and calculated
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the absolute difference between the values of the 2nd and
98th percentiles. Values at the bottom 1% and top 1%
were not taken into account to minimize the effect of
outliers. Transcriptional plasticity values of yeast genes
were obtained from (47).

Analysis of gene promoter size and orientation

Genome annotation with chromosomal locations and
orientation of 6059 genes of S. cerevisiae was obtained
from the Genome Browser of the University of
California at Santa Cruz (http://genome.ucsc.edu).
Given that the intergenic space in S. cerevisiae is rather
confined, we assigned as gene promoter the complete
intergenic region upstream of the transcription start site
(TSS) for each gene. Bidirectional promoters were defined
as the complete set of 812 non-overlapping divergent tran-
script pairs that shared a single TSS upstream region ex-
panding for a region up to 600bp long (~26% of 6059
yeast genes). This limiting distance between two divergent
ORF was chosen on the basis of a recent analysis of bi-
directional promoters of S. cerevisiae (48) according to
which divergent ORF pairs within <600bp share a
common nucleosome-free region (NFR) and are thus
expected to be subject to the same regulatory modulations.

Analysis of transcription factor binding

Putative transcription factor binding site locations for 126
yeast transcriptional factors (TF), supported by cross-
species evidence, were obtained from (49,50). Occurrence
of each regulator’s binding site in a region of —500nt
flanking the TSS of each deregulated gene was calculated
in bins of 20 bp to create a 126 x 40 matrix for each case
(all, down, up). Normalization was performed as Z-score,
meaning that from each value the mean was subtracted
and the remainder was divided over the standard
deviation.

Analysis of DNA sequence conservation and base pair
composition

Sequence conservation was determined using phastCons
scores (51) for S. cerevisiae as calculated on the basis of
multiple genome alignments against six Saccharomyces spe-
cies (Saccharomyces paradoxus, Saccharomyces mikatae,
Saccharomyces  kudriavzevii, Saccharomyces bayanus,
Saccharomyces castelli, Saccharomyces kluyveri). GC
content was calculated as the ratio of G+ C bases over
the total number of bases in sliding windows of 100 nts
with a 1-nt overlap. GC content was calculated as the
percentage of G+ C bases over the total in windows of
100 nts with a sliding window approach at 1-nt intervals
across a 1000-nt region flanking the TSS of down- and
upregulated genes and compared with all yeast genes
(average GC content for the yeast genome is 37.5%).
Deviations from Chargaff’s second parity rule (PR2)
were calculated as described in (52) using the relative dif-
ferences of purine—pyrimidine normalized over their sum
(A=T)/(A+T)and (G- C)/(G+C). Calculation was per-
formed in a sliding window manner with parameters iden-
tical with the ones used in the GC-content analysis (100-nt
windows sliding every 1 nt).
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Analysis of nucleosome positioning and stability

Nucleosome positions for the complete yeast genome
were obtained from (53). Nucleosome spacing in genic
regions was calculated as the mean distance between
adjacent nucleosomes in a given region. Thus, for a
gene occupied by N nucleosomes, the mean of the N-1
internucleosomal distances was taken as the average nu-
cleosomal spacing. Average nucleosome occupancies for
regions around disregulated genes were calculated as the
overlap of genomic regions flanking the TSS of
disregulated genes with the nucleosomal positions in
bins of 10bp. Z-score normalization was performed on
the average gene class profiles. Unstable nucleosomes
were obtained through an analysis reported by (54),
which defined 4827 ‘appearing’ and 2593 ‘evicted’ nucleo-
somes under the condition of zero overlap between the
normal and a heat-shock condition. ‘Appearing’ nucleo-
somes referred to those existing in the heat-shock condi-
tion but not in the normal one, whereas ‘evicted’
nucleosomes referred to those existing in the normal con-
dition but absent after a heat shock. Fragile nucleosomes
were obtained from (55), which defined 2641 nucleo-
somes with increased sensitivity to micrococcal
nuclease. Average nucleosome occupancy profiles for ‘ap-
pearing’, ‘evicted” and ‘fragile’ nucleosomes were
calculated in a manner similar to the one used for bulk
nucleosomes for a region of 500nts flanking the TSS.
Relative occupancies for ‘appearing’, ‘evicted’ and
‘fragile’ nucleosomes were presented as mean percentage
of overlap of the genomic region.

Analysis of nucleosome forming potential

Theoretical nucleosome affinity was performed with
SymCurv (56), an ab initio algorithm based on the
concept of the symmetry of DNA curvature. Briefly,
SymCurv values were calculated at nucleotide resolution
for a given DNA sequence as a score that corresponds to
the symmetry of the predicted DNA curvature in a given
window. Thus, SymCurv serves to capture a footprint of
the inherent symmetrical structure of the histone octamer
on nucleosomal DNA. Having pre-calculated SymCurv
for the entire yeast genome, we retrieved values around
the TSS for the complete set of genes as well as for all
subclasses of genes being up- and downregulated by topo
IT inactivation. Mean profiles were presented as Z-score
normalized values.

Analysis of chromatin remodeling activities

Genome-wide localization of eight chromatin remodelers
in S. cerevisiae (57) was used to assess their enrichment
across deregulated genes. Full lists of genes occupied by
each of the chromatin remodelers (Ioc3, Isw2, ArpS,
Ino80, Rsc8, Snf2, Toc4 and Iswl) were obtained and the
relative over-representation of deregulated genes among
them was assessed as enrichments over the expected
values. Bootstrap P-values were calculated on the basis
of 1000 randomized trials.
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Analysis of histone modification patterns

Enrichment of deregulated genes in histone modifications
was assessed through the ChromatinDB database (58).
The database has compiled published data on 22 different
histone marks, which thus permits a concise interrogation
of histone modification enrichment. Relative enrichment
was evaluated on the basis of Wilcoxon rank sum test for
both gene bodies and gene promoters.

RESULTS

Yeast genes deregulated on inactivation of
topoisomerase 11

We conducted a genomic transcription run-on (GRO) in S.
cerevisiae to examine changes of transcription rate
produced shortly after the inactivation of topo II. To do
this, we used a TO P2 control strain and its derivative top2-
ts mutant. We cultured both strains at 30°C and, on expo-
nential growth, we shifted them to 37°C for 10 min to in-
activate the thermosensitive top2-ts enzyme (Supplementary
Figure S1). At this moment, we permeabilized the cells,
radiolabeled their nascent RNA transcripts and analyzed
their signals in genomic arrays as detailed in the methods.

The alterations of transcription rates between both strains
were modest but highly consistent in three biological repli-
cates of the GRO experiment (Pearson coefficients > 0.95).
Within the 10 min of topo II inactivation, 270 genes (~5%)
increased their transcription rate by >1.5-fold, and 158
genes (~3%) decreased it <0.65-fold (Supplementary
Figure S2A). These alterations were uncorrelated with the
changes of RNA abundance produced after the more
extended inactivation of topo II (120min) that we
reported in previous studies (11) (Supplementary Figure
S2B). Prolonged inactivation of topo II stalls the progres-
sion of RNA polymerase II in a sharp transcript length
dependent manner (11) and this dependence did not occur
in the present study (Supplementary Figure S2C).

Preliminary examination of the gene subsets affected
shortly after topo II inactivation revealed the presence
of genes involved in the environmental stress response
(ESR) defined by Gasch et al. (41). ESR includes ~900
yeast genes (not including 7TOP2) that are commonly
altered in many different stress conditions (41). To
exclude these general stress genes from those more specif-
ically regulated by topo II, we performed an overlap
analysis. Although ESR genes were identified by RNA
abundance, this comparison was reasonable because our
previous studies had shown that transcription rates and
mRNA levels are highly correlated in general stress genes
(59,60). Roughly, one-third of the genes down- and
upregulated by topo Il inactivation were also down-
and upregulated wunder general stress conditions
(Supplementary Figure S3A). This filtering process did
not change the overall GRO values observed in the
original subsets of deregulated genes (Supplementary
Figure S3B). Thus, we considered the subsets of non-
overlapping genes (173 upregulated and 97 downregulated
genes) as those strictly and readily affected by the inacti-
vation of topo II (Supplementary Table S1).

Functional classes of deregulated genes

We went on to examine the enrichments of the gene
subsets strictly deregulated by topo Il among several func-
tional categories. The upregulated subset was depleted in
essential genes (<0.2-fold above the genome average)
and enriched in TATA-containing genes (~3-fold).
Conversely, the downregulated subset was enriched in
essential genes but not in TATA-containing genes
(Figure 1A). Consistent with the above, the upregulated
genes had on average a greater dynamic range of expres-
sion than the downregulated group (Figure 1B).
Nonetheless, both up- and downregulated genes presented
high-transcriptional plasticity relative to the genome
average, thus indicating that most genes affected by topo
IT have a large capacity for modulated expression on
changing conditions (Figure 1C).

In regard to Gene Ontology terms, as a number of func-
tional categories could compare under general stress and
under topo II inactivation, we defined ontology terms for
both conditions separately, distinguishing those enriched
under topo II inactivation but not under general stress.
The results obtained by applying a P-value threshold of
P <0.001 in the gene enrichment are summarized in
Figure 1D and the ontology categories are detailed in
Supplementary Figure S4. In the case of downregulated
genes, topo II inactivation and general stress were
enriched in 48 and 64 Gene Ontology categories, respect-
ively, with 33 categories common to both conditions.
Downregulated functions specific for topo II deactivation
were mainly related to chromatin remodeling and tran-
scriptional regulation and contrasted thus to the
downregulated functions only in general stress, which
mainly affect cell division and metabolic processes.
Downregulated functions common to both conditions
were related to ribosome biogenesis. In the case of
upregulated genes, 50 Gene Ontology categories were
enriched by topo II deactivation and 64 by the general
stress condition, with only 7 categories being common to
both conditions. Although upregulated functions only in
general stress were related to metabolism and protein deg-
radation processes, the upregulated functions specific for
topo II deactivation were mainly related to membrane
transport of polyamines. Commonly upregulated func-
tions were related to metabolic regulation.

Promoter size and configuration for transcription factor
binding at deregulated genes

The size of gene promoters in S. cerevisiae is constrained
by the short intergenic distance between ORFs, which is
<500bp on average (40). In this regard, the subset of
genes downregulated by topo II deactivation had much
shorter 5 intergenic regions (300 bp on average) than the
bulk of yeast genes. Conversely, the upregulated group
presented 5 intergenic regions longer than the global
average (Figure 2A). Another striking trait of these
intergenic regions concerned the occurrence of divergent
gene transcription, which occurs in ~26% of the global set
of yeast genes. Both up- and downregulated gene subsets
were highly enriched in divergent transcription genes (42
and 46%, respectively) (Figure 2B). Moreover, some genes
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threshold of P <0.001 are detailed in Supplementary Figure S2.

in the upregulated group were divergent pairs (YAL054C
and YALO53W, YLLO61W and YLL062C, YPR156C and
YPR157W), which suggested co-regulation from their
bidirectional promoter region.

We compared the distribution of binding sites for 126
putative transcription factors (TFBS) at promoter regions
of up- and downregulated genes and all yeast genes
(Figure 2C). Although most gene promoters presented a
broad distribution of TFBS with a concentration peak
around position —200, upregulated genes had much
higher occupancy profile of TFBS and a concentration
peak farther upstream (around position —300).
Conversely, downregulated genes tended to accumulate
TFBS closer to the TSS (around position —150).
In regard to the occurrence of individual TFBS, we
did not find significant differences between up- and

downregulated genes. However, we observed complemen-
tary profiles in the binding patterns of specific transcrip-
tion factors. Some TFBSs (i.e. AF2, OPI1, CADI, PDRI,
PAC, AROS80) were concentrated mainly between pos-
itions —200 and 0 in the downregulated genes, although
they were distributed farther upstream in the upregulated
genes (Supplementary Figure S5A). Other TFBS showed
the opposite trend (i.e. GAL4, GLN3, MSN2); they
were concentrated around position —200 in upregulated
genes and were enriched around position —400 in
downregulated genes (Supplementary Figure S5B).

DNA sequence composition and constraint in the promoter
regions of deregulated genes

Analysis of DNA sequence conservation, GC content and
A-T/G-C parities in the promoter regions of up- and
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downregulated genes exposed several differences between
them. First, consistent with their enrichment in essential
genes, downregulated genes showed around the TSS (from
position —400 to 400) a higher sequence conservation with
other Saccharomyces species than the upregulated ones
(Figure 3A). Second, although the GC content upstream
of the TSS (—250 to 0) is generally reduced in all yeast
genes (61), this GC-poor region was wider and deeper in
the case of downregulated genes, whereas it was narrower
in the upregulated ones (Figure 3B). Third, up- and
downregulated genes infringed differently the PR2, ac-
cording to which complementary nucleotides occur in
similar frequencies (AXT and G~C) in each DNA
strand (61). Deviations from PR2 are frequent at regula-
tory regions and impose prominent patterns around the
sites of transcriptional initiation (62,63,51). In the case of
A-T parity, deregulated subsets were similar to the
genome average, presenting sharp PR2 transition from
negative to positive values around the TSS and only
diverging in the position of minor peaks within the

region 0 to —400 (Figure 3C). In the case of G-C parity,
the transition from negative to positive values around the
TSS was more progressive, spanning the region —200 to
+200. This transition was more sharp in the
downregulated genes compared with the upregulated
ones and the genome average (Figure 3D).

Nucleosomal organization of deregulated genes

We examined the nucleosome landscape for up- and
downregulated genes based on the experimentally
defined nucleosome positions, which had been compiled
in recent years from several genome-wide studies (53). One
main divergence was related to the overall nucleosome
density (Figure 4A). Compared with the yeast average,
nucleosomes were spaced more closely in downregulated
genes (average spacing 21 bp), whereas a more sparse oc-
cupancy occurred in the upregulated genes (average
spacing 29bp). However, most revealing differences
regarded to nucleosome positioning nearby the TSS
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Figure 3. DNA base pair composition at the promoter regions of deregulated genes. (A) Sequence conservation calculated on the basis of multiple
genome alignments against six Saccharomyces species. Average PhastCons score for each gene class is presented on the y-axis, against the relative
distance from the TSS. (B) Average GC content calculated as the percentage of G+ C bases (100 nt windows sliding every 1 nt) relative distance from
the TSS (average GC content for the yeast genome is 37.5%). (C and D) PR2 violation against the distance from TSS. PR2 violations were calculated
as (A—T)/(A+T) and (G—C)/(G+C) ratios (100 nt windows sliding every 1 nt).

(Figure 4B). Both up- and downregulated subsets had
NFRs upstream of the TSS, which were weaker than the
average of all yeast genes. NFRs were in addition wider
for downregulated genes, a fact consistent with their wider
GC-depletion profile (Figure 3B). In comparison with the
yeast average, positioning of nucleosomes —1 and —2 at
the promoter regions was well defined for downregulated
genes but it presented weak patterns in the upregulated
genes. In turn, upregulated genes presented a strong pos-
itional signal for nucleosome +1 at the ORF region, al-
though this signal was weak for the downregulated group.
Remarkably, all the aforementioned divergences in
nucleosome positioning strength were consistent with the
nucleosome-forming potential of their DNA sequences.
We assessed this potential by SymCurv, an ab initio
method that predicts nucleosome positioning and stability
through the assessment of symmetric local DNA

bendability patterns (56). In downregulated genes,
SymCurv predicted well-defined peaks for the positions
of —1 and —2 nucleosomes, whereas in upregulated
genes, the SymCurv profile revealed a more overall
coarse pattern in the promoter and ORF regions with
the exception of a very prominent peak for the occupancy
of the +1 nucleosome (Figure 4C). To corroborate the
singularity of the nucleosome positioning patterns of
genes deregulated by topo II, we compared them with
the positioning patterns of genes affected by general
stress conditions and of TATA-containing genes. Unlike
the genes downregulated after topo II inactivation, the
genes downregulated by general stress and TATA-less
genes did not present prominent positional peaks for nu-
cleosomes —1 and —2 and a well-defined peak for nucleo-
some +1 (Figure 4D). Likewise, genes upregulated after
topo II inactivation highly contrasted with genes
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Results are represented as normalized Z-scores. (D) Comparison of nucleosome positional landscape of genes downregulated on topo II inhibition,
genes downregulated by general stress and TATA-less genes. (E) Comparison of nucleosome positional landscape of genes upregulated on topo II
inhibition, genes upregulated by general stress and TATA-containing genes. Nucleosome positioning patterns were obtained based on the experi-
mentally defined positions (53). Relative nucleosome occupancy is plotted as normalized Z-score values.

upregulated by general stress and TATA-containing
genes, which did not have a strong positional signal for
nucleosome +1 (Figure 4E).

Nucleosome dynamics and remodeling activities at the
promoter region of deregulated genes

In addition to nucleosome positioning, other studies have
described yeast nucleosomes as ‘appearing’ or ‘evicted’ ac-
cording to their presence or absence after a heat shock (54)
and as ‘fragile’ based on their susceptibility to MNase
digestion (55). We obtained such nucleosomes and
examined their relative enrichment near the TSS in genes
deregulated by topo II. Compared with the yeast average,
genes deregulated by topo II presented a more dynamic
nucleosomal pattern. In particular, downregulated genes
showed a prominent peak for an appearing nucleosome at

position +1 (Figure 5A); both up and downregulated
genes presented a higher occurrence of evicted and
fragile nucleosomes in positions upstream the TSS
(Figure 5B and C). Recent studies have reported also the
genome-wide localization of different chromatin re-
modelers in S. cerevisiae (57). Thus, we examined the as-
sociation of these remodeling complexes (Arp5S, Ino8&0,
Loc3, Loc4, Iswl, Isw2, Rsc8, Snf2) with the promoter
regions of the genes deregulated after topo II deactivation.
The results were revealing. Relative to the yeast gene
average, the downregulated genes were highly enriched
in chromatin remodeler activities, whereas the contrary
occurred in the upregulated group (Figure 5D). These
opposite trends occurred in the eight remodelers
examined and markedly contrasted with the relative en-
richments observed in genes up- and downregulated
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during general stress and in TATA-containing genes patterns of histone modifications for S. cerevisiae (58).
(Figure SE). On one side, the average pattern of modifications in
downregulated genes was not different from the one
found in most yeast genes (Figure 6A). Only a significant
increase of H2AZK 14 acetylation and H3K4 methylation
We examined the chromatin landscapes of the genes was observed in their promoter and ORF regions, respect-
deregulated on topo II inactivation with ChromatinDB, ively. These modifications contrasted with those typically
a web-based application that warchouses genome-wide found in genes downregulated by general stress, which

Histone modification pattern of deregulated genes
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Figure 6. Histone modification pattern of deregulated genes. Gene subsets downregulated (A) and upregulated (B) after topo II inactivation were
analyzed for histone modification enrichments in ChromatinDB (58). Relative enrichment (gene subset average compared with the total yeast
average) of each indicated modification was evaluated based on a Wilcoxon rank sum test for both gene promoters and the ORF regions. Stars

denote significant enrichment or depletion (P <0.001).

tend to be hypo-acetylated at their promoter regions
(Supplementary Figure S6). On the other side, upregulated
genes presented a distinctive landscape compared with the
genome average (Figure 6B). They exhibited a significant
reduction in histone acetylation, at both the promoters
and the ORF regions. Di-methylation of H3K36 was
also significantly reduced in promoters and ORF
regions. The occupancy of H2AZ, a histone variant
commonly found in nucleosomes around the TSS, was
significantly enriched downstream the TSS although
depleted upstream from it. This modification pattern of
upregulated genes highly contrasted also with the
patterns found in genes upregulated by general stress con-
ditions and in TATA-containing genes (Supplementary
Figure S6).

DISCUSSION

The genomic run-on conducted in this study shows that
inactivation of topo II in yeast triggers quick and repro-
ducible changes in the transcription rate of specific genes,
irrespective of other processes that may affect RNA mat-
uration and degradation. As the yeast cells retained their
native topo I activity, the observed alterations are unlikely
caused by the incapacity to relax DNA supercoiling
during transcriptional elongation. Moreover, the fact
that topo II inactivation deregulates genes of high tran-
scriptional plasticity, downregulates many essential genes
and upregulates numerous inducible TATA-containing
genes further indicates that the observed changes occur
at the level of transcription activation (47,64). Because
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one-third of genes deregulated on topo II inactivation are
also genes commonly altered by general stress conditions
(41), we removed these overlapping genes and conducted
functional and structural analyses on genes strictly
affected by topo II. This correction allowed uncovering
singular traits of genes up- and downregulated by topo
II, which could be otherwise masked by those of the
genes that commonly respond to general stress. On one
side, topo II inactivation downregulates functions mainly
related to chromatin remodeling and Pol II transcription,
which likely reflects the participation of the enzyme in
these processes. On the other side, topo II deactivation
upregulates many genes involved in polyamine transport,
which are rarely altered in other transcriptome responses.
Polyamines are essential for cell growth and regulate chro-
matin structure by directly affecting DNA topology and
nucleosome stability (65). Polyamines also regulate the
molecular interactions of topo II (66,67) and stimulate
its catalytic activity (68). The activation of polyamine
transport may thus reflect a homeostatic response, which
attempts to stimulate topo II activity and/or to stabilize
chromatin structure. Therefore, contrasting with a func-
tional stress response that imposes a broad self-limiting set
of general processes, the functional response to topo II
deactivation appears to be specific and driven toward
counter-balancing processes.

The singularity of the yeast gene subsets deregulated by
topo II becomes more evident when the configuration of
their regulatory regions is compared with the genome
average. Upregulated genes have a larger promoter size
and a wider upstream distribution of TFBS than
downregulated ones. No individual transcription factors
are associated with the up- or downregulated gene subsets.
Thus, rather than by interacting with specific TFs, topo 11
regulation may operate before TF binding or after TF
signaling. The enrichment in divergent transcription and
the complementary binding patterns of individual TFs
suggest that global aspects of promoter architecture
made these genes sensitive to topo II. Other dissimilarities
concern the DNA base pair composition of the promoter
regions. GC content correlates with double-stranded
DNA stability and nucleosome formation potential (61).
Compared with the yeast average, downregulated genes
present a wider GC depletion upstream the TSS.
Violations of PR2 associate to duplex transitions that
expose single-stranded DNA (69). Deregulated genes
present PR2 profiles that indicate compositional foot-
prints of distinctive DNA unwinding behavior around
the TSS.

However, the most revealing differences are in regard to
the chromatin structure of deregulated genes. Compared
with the yeast gene average, both up- and downregulated
groups present a weak nucleosome exclusion region imme-
diately upstream of the TSS. This feature has been
observed also in genes with altered transcript levels in
Atopl top2-ts double mutants (25) and may thus reflect
an increased sensibility of this configuration to global re-
duction of topoisomerase activity. Besides this common
trait, up- and downregulated genes markedly differ in
their nucleosome positioning patterns around their TSS
regions. Consistent with their overall lower nucleosome
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density, upregulated genes have weak —1 and —2 peaks
and a strong +1 positioning signal, which may nucleate a
barrier-like pattern for downstream nucleosomes (70).
Conversely, downregulated genes present well-defined
peaks for position —1 and —2 and a weaker signal for
nucleosome +1, suggesting that regulation is less depend-
ent on a nucleosomal barrier than on a more subtle coor-
dination of NFR and TF recruitment. Because these
positioning patterns are well predicted by SymCurv, the
intrinsic DNA bendability is likely to be the main driver
for the nucleosome organization. Consequently, sequence
constraints of topo II sensitive genes may determine
chromatin conformation and its interplay with nuclear
components. The fact that nucleosome positioning
patterns of upregulated genes differ from those of
TATA-containing and general stress upregulated genes
corroborate that topo II sensitive genes are structurally
distinct from generally inducible genes. Likewise,
patterns of downregulated genes are also different from
those of TATA-less and general stress downregulated
genes.

Analyses of chromatin dynamics show more distinctive
traits for genes deregulated by topo II. First, the profiles
of appearing and evicted nucleosomes around the TSS are
more pronounced than in the genome average. The weak
positioning peak for nucleosome +1 in downregulated
genes is consistent with the strong appearing nucleosome
at this position. Second, an elucidating difference is re-
garding the association to chromatin remodelers, which
is unusually high in downregulated genes and low in the
upregulated ones. This strong asymmetry is not observed
in TATA-containing genes and stress-regulated genes. The
preferential association to chromatin remodelers may
reflect the need to actively displace the well-positioned
nucleosomes —1 and —2 in the downregulated genes. In
turn, remodeler activity may be less relevant in the
upregulated group, which has weak nucleosome positional
peaks upstream the TSS.

Finally, the histone modification patterns of genes
deregulated by topo II inactivation are also distinctive.
The downregulated group is enriched in genes that in
normal conditions exhibit increased H2AZK14 acetyl-
ation at the promoter and H3K4 methylation at the
ORF regions. These two modifications are hallmarks of
transcriptional activation (71,72), which may thus involve
topo II activity. The upregulated group of genes exhibits
instead a strong trend to be hypo-methylated and hypo-
acetylated, at both their promoter and ORF regions. This
modification pattern differs from that of TATA-induced
and stress upregulated genes. Histone hypo-acetylation is
usually associated to heterochromatic regions (73,74) and
correlates with repression of transcription along with
H3K36 methylation (75,76). Upregulated genes may thus
have a more compacted chromatin structure, which
may counteract their fuzzy nucleosome organization.
Upregulated genes also present a significant enrichment
of the histone variant H2AZ downstream the TSS rather
than upstream of it. As H2AZ-containing nucleosomes
present high turnover rates (77,78), this trait may relate
to the strong +1 positioning signal observed in these
genes.
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Figure 7 summarizes the main structural traits and il-
lustrates the singularity of the yeast genes sensitive to topo
IT deactivation. Remarkably, many of these traits
resemble characteristics of genes regulated by topo II in
mammalian cells. On one hand, our results show that
yeast topo II is a positive regulator of genes with a well-
defined promoter architecture and physically associated to
chromatin remodeling complexes. A similar context is
found in mammalian cells, where topo Ila and topo IIf
isoenzymes interact with chromatin remodelers (30,79),
and DNA cleavage activity of topo IIp occurs at specific
gene loci in conjunction with machinery that activates
transcription (36,80,81). Yeast genes activated by topo 11
have a deeper GC depletion at their promoters, and topo
1B is found to bind preferentially with AT-rich intergenic
regions (35). Yeast genes positively regulated by topo II
present a significantly increased H3K4 methylation, and
topo IIf is found also to mainly interact with regions con-
taining H3K4 methylation (38). Yeast and mammalian
topo II enzymes may thus function in similar environ-
ments in conjunction with remodeling complexes to
adjust DNA topology for transcriptional activation. On
the other hand, our results show that yeast topo II is a
negative regulator of highly hypo-acetylated genes with
undefined nucleosome positioning, which suggests tran-
scriptional repression by chromatin condensation. Topo
IT has been long involved in high-order organization of
chromatin (9), centromere configuration (82) and genome
compaction in sperm cells (83-85). In mammalian cells,
topo IIP is implicated in heterochromatin transitions
that depend on histone deacetylase (81). Therefore, yeast
topo II and mammalian topo IIf may use similar mech-
anisms to repress transcription by inducing or stabilizing
condensed chromatin states. Interestingly, many genes re-
pressed by yeast topo II are involved in the transport of
polyamines, which favor chromatin condensation. The
configuration of these genes may serve thus to both
detect and functionally counterbalance a failure of topo
II activity.

In summary, our study reveals that yeast topo II is not
only the essential decatenase and main relaxase of DNA
but that it also plays a regulatory role in the expression of
specific genes. Although genes regulated by topo II in
yeast are functionally unrelated to those regulated by
topo II in mammals, our results suggest that transactions
involving chromatin organization and topo II activity may
be conserved.
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